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The weakly nonlinear, two-dimensional problem for the disturbancc due to a 
slender obstacle in a uniformly stratified, Boussinesq fluid moving past the ob- 
stacle with constant basic horizontal velocity U ,  is considered up to  second order 
in the amplitude B of the disturbance. Analogous rotating problems are also 
treated. Particular attention is given to  calculating explicitly the columnar- 
disturbance strengths upstream and downstream of the obstacle, both in the 
stratified and in the rotating problems, with a view to discussing the truth or 
otherwise of Long’s hypothesis (LH). 

Whether or not columnar disturbances are found far upstream, violating 
LH, depends, interalia, on whether or not the flow is externally bounded by rigid 
horizontal planes (or by a tube or annulus, in the rotating problem), and on 
whether the problem is made determinate by means of an ‘inviscid transient’ 
formulation, or by means of a ‘viscous’ one. 

The inviscid, transient, bounded problem, for time-development of lee waves 
from a state of no initial disturbance, always exhibits columnar disturbances of 
order e2 somewhere in the fluid. They are generated, not near the obstacle, but 
in the ‘tails’ or transient terminal zones of the lee-wave trains. The columnar- 
disturbance strengths are largely independent of how the flow is set up from an 
initially undisturbed state. I n  all but one instance the effect is non-zero far up- 
stream. The exception is the singly-subcritical stratified (or narrow-gap rotating) 
case, in which the excitation has modal structure sin(2z), the fluid region being 
0 < z < T ;  in this case the only columnar disturbance that can penetrate up- 
stream has structure sinz and so is not excited. 

A completely different result holds for ‘viscous ’ formulations for unseparated, 
bounded regimes (with steady lee waves spatially attenuated by effects of small 
molecular diffusion). The strengths of all columnar disturbances, upstream and 
downstream, vanish in the limit of small diffusivity. 

I n  the inviscid, transient, unbounded problem, the upstream influence is, 
likewise, evanescent, being O(e2t--2) as time t .+ 00. 

The basic expansion in powers of B will be invalid for times K e-l or greater, 
because of resonant-interactive instability of the lee waves. 

F L M  5 2  
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1. Introduction 
This paper is concerned with the weakly nonlinear lee-wave regime for two- 

dimensional disturbances in a Boussinesq, incompressible, stably stratified fluid 
characterized by constant basic buoyancy frequency 

N = { - g 8 In (basic density)/&)*, 

and also for analogous homogeneous, rotating fluid systems. The disturbances 
are caused by a stationary slender obstacle past which there is uniform basic flow 

( U ,  0 , O ) .  

The co-ordinates (x, y, x )  are oriented so that for stratified systems the accelera- 
tion due to gravity is (0, 0, - g ) ,  or so that for homogeneous systems the basic 
rotation is ( + N ,  0 , O ) .  

Except in $ 6  it is supposed that the fluid, as well as being inviscid and non- 
diffusive, is confined between boundaries z = constant. Then there are discrete 
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disturbance modes 

each of which has intrinsic phase and group velocities 
fn(z f  ~ X P  [ik{x - ( LJ + cn) t>I 

211 

(1.1) 

cn(k), yn(k) a,(kcn) 

that are equal at  k = 0 and of decreasing magnitude (so that yn/cn < 1) for k > 0. 
At given n this dispersion property allows stationary lee waves to appear down- 
stream of the forcing effect when, and only when, it also allows $-independent 
‘columnar’ steady disturbances to penetrate upstream. Excitation of those 
columnar disturbances that can penetrate upstream implies permanently altered 
velocity and density profiles arbitrarily far upstream (Trustrum 1964; Green- 
span 1968). 

This possibility of ‘upstream influence’ is known to be realized, for instance, in 
two-dimensional, stratified flow over a shallow step or semi-infinite plateau, 
according to linearized theory for infinitesimal values of an appropriate dimen- 
sionless measure of the step height, 

€ <  1. 

Other examples are axisymmetric rotating flow past a semi-infinite cavity, or 
any other source-like forcing effect (Benjamin & Barnard 1964; Trustrum 1964, 
1971 ; Wong & Kao 1970). A lee-wave regime for which theory predicts excitation 
of columnar disturbances at  first order in G will be said to be of type one.? 

I n  the dipole-like case, for example a slender obstacle of finite extent in x ,  
linearized theory predicts zero excitation of columnar disturbances by the ob- 
stacle so that, in this case, there is no upstream influence at  first order in 8. We 
thenspeak of lee-wave regimes of type zero. Long’s hypothesis (LH) is the stronger 
statement that the upstream influence is exactly zero, or zero to all orders in 8, in 
problems of type zero. LH has been a subject of recent controversy, both for the 
bounded prob1em:and also for the problem in which the external boundaries are re- 
moved toz = 00 (Stewartson 1970, and references). The truthof LH is a necessary 
condition for the physical relevance of certain exact, finite-amplitude solutions 
representing stationary lee-wave patterns (Yih 1965, Greenspan 1968, Benjamin 
1970); these ‘Long-type’ exact solutions apply, in the case of a Boussinesq 
fluid, only if the flow at upstream infinity is uniform. It should be noted that the 
foregoing tacitly assumes a suitable context which renders the problem deter- 
minate, such as that of inviscid evolution from an undisturbed, uniform initial 
state, or that of steady, viscous, diffusive flow in the limit of small diffusivities. 

The recent work of Benjamin (1970) strongly suggests invalidity of LH for 
the bounded problem, in the inviscid, transient context. His paper demonstrates 
indirectly that columnar disturbances of order e2 must occur somewhere in the 

t ‘ Upstream influence ’ is also a feature of the blocked or Taylor-Proudman regime 
(U infinitesimal, E finite: Morgan 1951; Stewartson 1952; Bretherton 1967), but connection 
with the present lee-wave regimes appears remote and would seem likely to be superficial 
as well. Intervening rBgimes seem inaccessible to rational theory, and appear turbulent 
experimentally. “he lack of connection will be further emphasized by the entirely different 
manner in which columnar disturbances turn out to be generated in the cases to be con- 
sidered below, and the fact that the alteration to the velocity profile can be opposite in 
sense to that which would be expected from ‘blocking’ ($4.5 below). 

14-2 
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flow field, by showing that the wave drag on the obstacle cannot otherwise be 
accounted forin termsof the rate of increase of fluid impulse. Despite a claim made 
in the paper, the impulse argument does not quite settle the LH issue, because of 
the logical possibility that all the second-order columnar disturbances might 
appear far downstream. 

The purpose of the present work is to clarify this situation by explicitly solving 
for the relevant effects of order s2. Most attention is given to the inviscid, bounded 
problem considered by Benjamin; but the corresponding qualitative results in 
two other possible contexts for LH become clear also, and are stated in $6. For 
the inviscid, transient, bounded problem we confirm Benjamin’s result that 
columnar disturbances are always excited when lee waves are present. Further, 
we give the rules for calculating their strengths and locations, both in the strati- 
fied (554.5, 4.6) and in the rotating-tube problem (appendix A)?. It is argued 
(3 4.6) that the columnar-disturbance strengths are largely independent of how 
the lee-wave regime is established, as long as it is established from an initially 
undisturbed state. Upstream influence usually occurs; but in one instance it is 
absent and the second-order columnar disturbances are confined downstream 
of the obstacle, together with the corresponding fluid impulse. (This can also 
occur for lee-wave rkgimes in a system consisting of two layers of homogeneous 
fluid, as has been shown recently by Keady (1971).) 

An interesting feature, and incidentally one that underlines the lack of con- 
nection with the blocked-flow rkgime, is that the excitation of columnar distur- 
bances takes place not in the near field, but in the far field of the obstacle. For 
the Long-type basic flow under consideration, the columnar disturbances 
emanate from the ‘tails’, or transient terminal zones, of the lee-wave trains. The 
importance of the lee-wave ‘tails’ is evident as soon as one realizes that they 
represent the only reasonable possibility. The existence of the Long-type steady 
solution, which is of linearized form but which satisfies the exact equations, tells 
us in advance that, when we make an expansion in powers of e, no steady part of 
the order-s lee-wave system can be responsible for the order-$ effect that Ben- 
jamin’s impulse argument assures us must occur in association with the lee waves. 
(In Benjamin’s averaged equation (4.25)) the effect of the lee-wave tails would 
appear on the right-hand side as an inhomogeneous forcing function involving 
delta functions and their derivatives. This would be the counterpart, viewed on 
a different length scale, of the right-hand sides of equations (4.1 a, b )  below.) 

From a general standpoint, the role of the lee-wave tails can be regarded as 
another illustration of the importance of slow spatial and temporal variations 
in the amplitude of a wavetrain, when considering phenomena of second order in 
amplitude. This has been appreciated for some time in the case of surface gravity 
waves (Longuet-Higgins & Stewart 1964). Another, more closely related instance 
of it is to be found in the recent discussion by Bretherton (1969) of the second- 
order motions induced by freely propagating internal-gravity-wave packets, 
in an unbounded medium. One of the problems solved by Bretherton anticipates, 
in important respects, the discussion given in 56.2 for the unbounded problem. 

(1972),  with particular attention to the asymptotic approach to  the unbounded problem. 
t The latter results are developed in greater detail in a forthcoming paper by Miles 
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Throughout the body of this paper we shall use descriptive language appro- 
priate to a Boussinesq, thermally stratified fluid; but the rotating analogy should 
be borne in mind. The reader already familiar with the linearized, transient lee- 
wave problem may prefer to omit $ 3  and proceed to $4. Our main results are 
stated in 3Fj4.5, 4.6, 6, and appendix A. An important restriction on their range 
of validity is indicated in § 7. 

2. Formulation 
2.1. Equations and boundary conditions 

The equations will be made dimensionless with the use of U as velocity scale, 
D as length scale, and D/U as time scale. Then the buoyancy frequency will 

K = N D / U .  appear as 

We assume two-dimensional motion of an inviscid, Boussinesq, incompressible 
fluid, except in $6 where viscous effects will be discussed. The word 'inviscid' 
signifies that the viscosity and the diffusivity of density anomalies are both 
assumed zero. The buoyancy acceleration is ( O , O ,  -gp'/po), where p' is the 
(small) departure from the basic-state density 

pb = po( l  -g-'N2z) (g-1N'D < 1). 

The dimensionless form of the buoyancy acceleration is (0, 0, B), where 

A disturbance stream function is defined by 

(2.1) 
x component of velocity = 1 + as$, 
z component of velocity = - aZ$, 

so that the y component of vorticity is 

7 = ~ $ 3  (a; + a;) $. (2.2) 

The equations can then be written without further approximation as 

(at+ a,) 7 + 8x0 = a($, r ) P ( x ,  4, ( 2 . 3 ~ )  

Let 

and let the introduction of the obstacle over which the fluid is to flow be described 

z = Eh(x,t) ( E  < I) (2.5) 
by 

where h = 0 for t < 0. 

It is convenient to suppose that, qua function of x, h has certain weak smoothness 
properties to be made precise by ( 3 . 5 b )  below, and that 

h = O(e-plzl) as 1x1 + 00, (2.6) 
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where p is a positive constant. This includes the practically interesting case where 
h = 0 outside a finite range of x.? 

The boundary condition that the normal component of velocity be continuous 
can be written 

-ax$ = s{ath+(1+a,$)a,h} at z = E h .  ( 2 . 7 ~ )  

If there is a horizontal upper boundary, we impose 

Also 
ax$ = 0 at x = 7 ~ .  (2.7b) 

a,$, @ - t o  as 1x1 +00 (t < 00). ( 2 . 7 ~ )  

2.2. Basic expansion in powers of amplitude 

It is now assumed that the dependent variables $ and 8 can be expanded in 
powers of B ,  as follows: 

(2.8) I $(x, 2, t ;  6 )  = € $ ( l ) ( X ,  2, t )  + €2$-(2)(X,  2, t )  + . . ., 
e(x ,  2, t ;  €1 = s e y x ,  2, t )  + ~ w ( X ,  2, t )  + . . . . 

These expansions are substituted into the equations and boundary conditions, 
and like powers of B equated. To do this in ( 2 . 7 ~ )  we assume that $ can be ex- 
panded in powers of x about z = 0 for each t and x such that h + 0. The first-order 
problem in the bounded case is 

( 2 . 9 ~ )  

(2.9b) 

( 2 . 9 ~ )  

- a x p  (x ,  0, t )  = (a,+ a,) h ,  (2.9d) 

$“”(x,?r,t) = 0, (2.9e) I a,$(1), -t 0 as 1x1 -t cc (t < 00). (2.9f) 

By definition 
with a convenient choice of the ‘constant ’ of integration. 

= V2$(l), etc; also (2.7 b) has been integrated with respect to x ,  

The second-order problem is 

(a, + a,) p + a, O(2) = A, 

(a,+ a,) O(2) - K2 a, $(2) = 97, 

( 2 . 1 0 ~ )  

(2.1Ob) 

$@) = O(2) = O for t < 0, (2.10c) 

( 2 . 1 0 4  

,az$(2), 6 2 )  -+ 0 as 1x1 + 00 (t  < 00). (2.10f) 

(2.1 1 )  

a , p ( X ,  0, t )  = a,R(x, t ) ,  

?pyx, 7r, t )  = 0, (2.10e) 

In  the boundary condition (2.10 d )  

A(x,  t )  - h(x, t )  as@’) ( x ,  0, t ) ,  
t To forestall possible confusion throughout this paper, note that ‘ a  = O(b)’ is not synony- 

mous with a verbal expression like ‘ a  is of order b ’, but includes the possibility that a = o ( b ) ,  
i.0. that a/b vanishes in the limit (Lighthill 1958, p. 2). 
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a known function once (2.9) is solved. The role of a,& as a forcing function in 
problem (2.10) is similar to the role of the right-hand side of (2.9d) in problem 
(2.9). In  problem (2.10) there are two more forcing terms. The mechanical forcing 
A has the nature of the curl of a body force, while g represents a rate of input 
of buoyancy into, or rate of heating of, the interior of the fluid. 4 and g are 
defined by 

(2.12) 
.A(x,  2, t )  = 8($(1), @))/8(x, 4, ]  
B ( x ,  2, t )  = a($@), s q p ( x ,  2). 

They represent what the fluid feels as a result of redistribution of momentum and 
buoyancy by the first-order motions. 

Throughout this paper we shall assume that the formal procedure leading to 
(2.9)-(2.12) is mathematically justifiable in some sense. The conditions under 
which this assumption seems likely to be true are discussed in $ 7 ; they are more 
restrictive than appears to have been commonly recognized in connection with 
discussions of Long’s hypothesis. 

2.3. Definition of ‘ columnar disturbance ’ 
In  the context of the time-dependent problem that is our main concern except in 
$ 6, the term ‘ columnar disturbance ’ will be understood to mean a contribution to 
$ or 8 which, for a general fixed value of z ,  is one-signed throughout an  x-region 
whose length continually increases as t ,  for large t. The usual way in which such a 
disturbance arises is that one end of the expanding region propagates freely with 
the long-wave speed c,(O) (like a change of surface elevation in free-surface 
channel flow), whilst the other end is supported by continued forcing which itself 
is confined to some comparatively small region. 

The kind of forcing that will support columnar disturbances can appropriately 
be called forcing ‘of type one’; what this involves will become apparent from a 
simple physical argument given in $4.4. Qualitatively speaking, a central result 
of $ 4  is that the contributions to A and 28 due to the self-interaction of a lee- 
wave tail do, in fact, represent forcing of type one (in complete contrast with the 
type-zero forcing represented by the right-hand side of (2.9d)). 

3. First-order solution for the inviscid, bounded problem 
Throughout $$3, 4 and 5 it  will be assumed that 

1 < K $; integer. (3.1) 

The largest integer less than K will be denoted by nIc. 
To fix ideas, attention will be restricted to the particular case 

I 0 for t < 0,  
h(x) for t > 0. 

h(x,t) = (3.2) 

It is emphasized, however, that the leading results concerning columnar-dis- 
turbance generation can be shown ($4.6) to be unaltered by introducing more 
general ways for h(x, t )  to increase from zero with time. 
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3.1. Solution of problem (2.9) by integral transforms 

We define Fourier-transformed dependent variables (in which there will be no 
need to retain the superscript (1)) as follows: 

and similarly &k, z ,  t ) .  Also 

where 

By (2 .6 ) ,  &(k) is regular in a strip 

IIm(k)l < P, 

(3 .3 )  

(3 .4 )  

( 3 . 5 ~ )  

and it is convenient to assume that h(x) is sufficiently well-behaved that 

a,6K = 0(lkl-2) uniformly for IIm (k)l < ,8, (3 .5b)  i 
K(k) = o(p1-1-8) 

a$ = o(lk1-3) 

as Ikl -+ co, where 6 is some positive constant. 
After Fourier and Laplace-transforming problem (2.9) and solving, we may 

carry out the Laplace inversion exactly since it is found that the only singularities 
are poles on the imaginary axis, corresponding to the real frequencies 

w = 0, 

w = k ( l + c , )  ( n =  1 , 2 , 3  ,... ), 

where c, = c,(k) = K(k2 + n2l-t ( > 0, k real). (3.6) 

For t > 0, i.e. after the initial, irrotational response of the fluid to the introduc- 
tion of the obstacle, the result for $ can be written 

$(k, 2,  t )  = &(k, 2 )  + $+(h 2, t )  + 8% 2, t )  (t > O), (3.7) 

where the first, steady, contribution arises from the pole at the origin and is found 
to be 

with the same choice of branch in the numerator as in the denominator. The 
remaining terms are given by 

m 

n= 1 
+*(h z ,  t )  = C $$@, t )  sin (nz) ,  (3.9) 

where (3 .10)  



where 

and 

(3.12) 

(3.13) 

We note that c,(k) is the intrinsic phase speed of the nth mode at  wavenumber 
k, and that the cplus’ and minus’ contributions to $ and 8 are associated with 
waves whose phases propagate respectively with, and against, the basic flow. 

It will be observed that the separate contributions $- and 0- have poles on the 
positive real k-axis, at  each of the finite number of points for which c, = 1, viz. 

k = tt, = (K2-n2)i  > 0 ( I  < n < nK). (3.14) 

Since K2-  tt2, = n2, (3.8) and (3.13) show that these are also the polesof $s and 8,. 
A simple calculation shows that the residues for and $- are equal and opposite, 
as are those for as and &. It follows that 8 and 8 are regular, in a strip 

where the positive constant 
jIm(k)/ < P’, 

p’ < min [p, {(nK + - K2)i]. (3.15) 

Further, since h(s)  is real, E( - k) = E*(k) for real k; (3.6)-(3.13) then imply 
that the same is true for $ and 8. Similarly, $dk and 8dk are pure imaginary 
if k and dk are pure imaginary and if k lies between & ip‘. Therefore the inverse 
Fourier transforms of 8 and 8, giving the desired solution to problem (2.9), can 
be written not only as integrals from - co to + oc) but also as 

$(l)(s,z,t) = 2Re $eikxdk, O(l) = 2Re 8eikxdk (-/3‘ < ,u < /3‘), (3.16) 

where the path is to lie within IIm (k)] < p’. The path may be taken on, or to 
either side of, the real axis (with an appropriate choice of the real number p)  in 
virtue of the regularity of $ and 8. 

1%; L 

3.2. The tail of the nth lee-wave train 

The magnitude of the intrinsic group velocity of a component whose intrinsic 
phase speed is c,(k) is 

y,(k) = la,(kc,)l = Kn2(k2+n2)-8 > 0. (3.17) 

In particular, it will be found that the tail of the nth lee-wave train moves 
downstream with absolute velocity 

bn 3 l -Yn(&n) ,  

(3.18) 

We anticipate that the contributions to $(l) (x, z, t )  containing lee waves are 



218 M .  E .  McIntyre 

those for which the corresponding separate contributions to $ have poles a t  
k = ittn, namely 

where 

( 3 . 1 9 ~ )  

$s(x, z )  = 2 Re/%:$,(k, z )  eikx dk (3.19b) 

and (cf. (3.10)) 
K(k) exp [ - ik(1 k c,) t + ikx]  

dk. ( 3 . 1 9 ~ )  nK2 (1 & C,) 
$;(x, t )  = 2 Re 

The paths of integration may be taken above or belowthe pole at k = it,, provided 
that the same is done for each $; as is done for $s. From now on each path will be 
taken above k = k,, unless otherwise stated. 

It is shown in 3 3.3 that this choice makes the steady part $s exponentially small 
as x -+ fco, i.e. far downstream. This means that $s will not by itself describe 
the steady lee waves at t = co, in the usual way. But $;, by itself, will describe 
the tail of the nth lee-wave train. 

We can rearrange $; (without approximation) in the form 

(3.20) 

(3.21) 
dlc 3,(x, t )  = 1; f , (~  exp {itk(c, - 1) + i(k - kn)x)- k- it,' 

[above k=Bn] 

where the function f, in the integrand is defined by 

(3.22) 

Note that f, is regular in the right-hand half of the strip IIm (k) [ < p', and that 

f, = o(pl-4-81 

as (kl + 00, uniformly in IIm (k)l 6 p', by (3 .5b )  and (3.6).  
It will be convenient to change the variable of integration in (3.21) to 

Writing also 
z = ti(& it,). 

x, = t - q x -  &t ) ,  

(3.23) 

(3.24) 

we find for the exponent in (3.21) 

{ 1 = itk[c,(k) - I] + i ( k  - it,) (b,t + t*x,) 

= iCp,(Z, t )  + i zx,, 
say, where 

and the coefficients 
Cp,(Z, t )  =_ k,) 12 + Qt-+JZ( it,) z3 + . . ., (3.25) 

{ ~ A ( i t m ) ,  y:(itn), **.I = { a k ~ n ( k ) ,  aEyn(k), **-)lk=ttn* 

8, can-now be rewritten as 
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nJ(6fln) 3n 

FIGURE 1. Limiting form of the complex wave amplitude in the lee-wave tail. The solid 
curve, takenwith theleft-hand ordinate scale, represents the modulus of uL1sn; the broken 
curve, with the right-hand ordinate scale, represents its phase tY(a;'F,, = la;l Fnn(e"). 
The fine dotted curve represents the asymptote 6 N &r + (abscissa)2) (Abramowitz & 
S t e p  1964, eqs. (7.3.9, 10, 22, 27, 28). 

To help visualize the qualitative appearance of g,, we note the leading saddle- 
point approximation to it, as t + 00 with r, = O(1). Thisapproximationhas 
error O(t-s), and is the result of neglecting all terms that are O(t-3) in (3.26), and 
replacing the lower limit of integration by - co, i.e. 

Carrying out the second integration we find that 

where the complex constant 
an = - 4ik;1nL(kn). 

(3.27) 

(3.28) 

Graphs of the modulus and phase of S,(x,) are given in figure 1 ; Pn has the form 
of the complex Fresnel amplitude characteristic of the general asymptotic be- 
haviour of the envelope of a dispersing semi-infinite sinusoidal wave. Since Pn 
approaches a, as x, decreases, we anticipate that a, is the complex amplitude of 
the stream function for the nth lee-wave train. 

The foregoing approximate representation (3.27) of S, helps to  fix ideas, but 
we emphasize that it is not used in the subsequent analysis, which will make use 
only of a few rather general properties of 8, (some of which cannot, in any case, 
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be deduced from (3.27)). The needed properties are that, provided Ix,I is not too 

(3.29) 
large, say 

then (a)  a,g, = - - t ~ ~ g , + o ( t - ~ 2 ~ )  (3.30a) 

where i, = max (Ix,l,l); and ( b )  

xn = o(&), 

(3.30 b)  

and (c )  8, is smooth enough to satisfy 

a p - p g ,  = o(t-tr$-l) (I < r < 4; p 6 r ) .  ( 3 . 3 0 ~ )  

These relations follow easily from the exact expression (3.21) or (3.26), after 
first carrying out any differentiations required and then estimating the resulting 
integrals. -f 

From (3.13), the contribution to O(1) corresponding to $; sin ( n z )  is, say, 

0; sin (nx) = Re{@,(x, t )  exp (ik,x)}sin ( n z ) ,  (3.31a) 

where 8, is the same as (3.26) apart from insertion of the following extra factor 

K2{C.,( k, + t-*Z)}-l, 
into the integrand: 

which can be expanded as 
K2 + k,t-*Z + O(t-lZ2). 

k, t -41 eilyn = - i k, a, ef%, 
Now 

and so we have (still assuming x, = o(t*)) 

(3.31 b)  

(3.32) 

a relation that will be needed for evaluating the nonlinear term 9 in $4. 
It can also be shown in the same way as for (3.30) that, consistently with (3.32), 

aga;-~(@jn-K2g,) = O(t-+@+l)jZT,) (0 < r 6 3; p 6 r ) ,  (3.33) 

provided that x, = o(t3). 

in $4. 
3.3. T h e  ‘purely transient’ and the steady contributions 

The representations (3.20) and (3.31a) are useful only in the tail region x N 8,t. 
Outside it, and for those contributions $; that do not contain any lee waves, 
different forms are more useful. These are used in obtaining the results of $5, 
and show in particular that all contributions to  $(l) apart from the lee waves and 
their tails, and the steady obstacle near-field, are evanescent, algebraically or 
faster, as t -+ m. The latter conclusion also follows, of course, from the standard 

The results (3.30)-(3.33) contain all the information that is directly made use of 

t Taking a path of integration similar to that shown in figure 2 below, one notes that in 
eachcase (3.29)makesthefirsttermin(3.25) dominant near thesaddlepoint I = -x,/yd(k,). 
The hypothesis (3.5b) permits an easy proof that there is no significant contribution from 
large Ikl; the factors multiplying the exponentials in the integrands are absolutely integrabIe, 
being O(kr-5--b) uniformly over the strip /Im(k)I < ,!?’ as Ikl + co. 
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FIGURE 2. Path of integration, P, for (3.37 b ) ,  when k,, < ft,, i.e. when x < ~ , t ,  upstream of 
the tail. The dot indicates the pole at k = L,; the path crosses the real axis a t  the saddle point 
k = ken. 

saddle-point approximation; but for the purposes of 9 5 this approximation must 
be avoided, as before. 

The starting point is the following slight rearrangement of ( 3 . 1 9 ~ ) :  

$k(x, t )  = @&h t )  + Re{Lk exp (ift,4}; (3.34) 

(3.35) 

where the path P lies in 11.1 (k)] < p' and is chosen to make the integrand as 
small as possible consistent with this. We have defined 

$&(x,t) = Re/ f$(k)exp[-ik(1 +c,)t+iks]dk, 
P 

= O(lkI-5-s) (lkl -+co,[Im(k)l < P), 
a, (x < 0,t and n < nK), ( 3 . 3 6 ~ )  
0 (x > bnt or n > nK), (3.36 b )  

(3.36 c )  

For an observer moving a t  constant velocity, either @& is exponentially small as 
t -+ CO, or there is a saddle point on 0 < k < cx), in which case the path P must be 
taken through it as in figure 2, keeping t o  the unshaded regions (within which 
the integrand is exponentially small). In the case of $; (n < nK) there is also a pole 
on the positive real axis. In  figure 2 the path P is shown running below the pole, 
corresponding to the possibility (3.36a), in which ($& - $;) = Re (2ni times the 
residue at  the pole). 

The regions of space-time in which $&, is not exponentially small as t + co are 
illustrated for the case n < n, as regions i to vii in figure 3. Those in which $& 
is not exponentially small are regions vii to ix. In  such regions it is useful to re- 
write (3.35) and its derivatives with respect to x in the form 

L, = 

L,t = 0 (all x, n). 

8; $& = Re {F; exp (ikon x - iuOn t )} ( 3 . 3 7 4  

where ykr(x ,  t )  =lp(ik)'j2(k) exp {it$f(k; x, t)> dk.  (3.37 b)  
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f 

+; 
Tail, (3.20) and (3.31) 

FIGURE 3. Regions for describing the asymptotic behaviour as t + co of the sinnz component 
of the fist-order solution P1)(x, z, t ) ,  for n. 6 n ~ .  Regions i and ix are of order t )  in size, region 
iii is of order unity in size, region v, the tail, is of order t* (it corresponds to Ix,I 5 1, in the 
notation of §3.2),  and region vii is of order t$. The remaining regions, denoted by the upper 
case Roman numerals, are of order t in size. The corresponding diagram for n. > n~ is similar 
except that regions iii and v are absent, i is downstream of x: = 0, and 11, IV  and VI  merge 
together. 

The parallelogram 9 is referred to in § 5. 

By choosing k,, and won as the wavenumber and frequency at which the absolute 
group velocity is xt-l, corresponding to the saddle point, the function 4; can be 
made to have the Taylor expansion 

(b;(k; x,t) = T ( k - k , , ) ~ + ~ y ~ ( k o , ) ( I c - k , , ) 3 +  ...}. (3 .37c )  

The dependence of k,, and won upon x and t, slowly varying for large t ,  is given 
explicitly by 

(3 .38  a) 

where x = xt-1- 1 (3 .38 b )  

and 

c, 8 4 
k,,(x,t) = .[ (x) - 11 ( > 0, 1x1 < Cn), 

c, EE C J O )  = K/. > 0; 

also mOn(x, t )  kOn{1* cn(kon)] 

= kOn{1 + (CiX)+}  (sga ( )+ = sgnx) .  ( 3 . 3 8 ~ )  

P$ (5, t) is found to be similarly sIowly varying, in a sense that can be made 
precise by forming its derivatives with respect to x and t and then estimating the 
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result in the same way as led to (3.30). F k  ,, itself is generally O(t-4) in magnitude; 
but care is needed in order to take correct account of details near the tail region v 
if present, near regions i and ix where k,, is small, and near region vii where it is 
large.? It is upon estimates of a;, and its derivatives, and corresponding esti- 
mates concerning e$, that much of the error analysis of $ 5  is based. 

There remains the time-independent contribution to $(l) given by (3.19 b ) ,  in 
which$,isdehedby(3.8). Wenotethat$, = -6forz = 0,andrestrict attention 
t o  fixed z > 0 (and < n). 

Now (3.8) can be written 

$ s ( k  2) = $do + $s(m) (3.39) 
where the regular part 

(3.40 a)  

(3.40b) 

It can be shown from (3.5) (with reference to Lighthill (1958, p. 49)) that 

where /3’ is the positive constant defined by (3.15). The corresponding contribu- 
tion 

es,, = K2$s(o. (3.41 b )  

Therefore $s(l) and O,,,) represent only ‘near-field ’ contributions, exponentially 
small at  large distances from the obstacle. Also 

which upon substitution from (3.40b) can be evaluated as a sum of residues. 
Denoting Heaviside’s step function by H ( x ) ,  we have 

nli 

n= 1 
$s(m) = - H (  - x) C Re (a,eik@) sin (nz) ( = K-28s(m)), (3.42) 

where a, = - 4iii;ln6(fn), as before. (Of course, the discontinuity at x = 0 must 
be cancelled by an opposite jump in $s(o. The sum $* = $s(o + $s‘m) must, indeed, 
have a very smooth x-dependence (for 0 < z < m), because of the exponential 
smallness of its Fourier transform gS = O(k-l-se-zlkl) as Re@) + co.) 

The statement made in $3.2 that $, + 0, exponentially as x --f +a, is now 
verified by (3.41) and (3.42). For x > 0, (3.42) is zero and as soon as we are far 
enough downstream for the near field, (3.41), to be negligible, the lee waves are 

t It is for the latter region that it is convenient to assume the second and third of (3 .5b ) .  
More detail is given in longer versions of $0 3.3 and 5, copies of which are available on request 
from the J.P.M. editorial office, D.A.M.T.P., Silver St, Cambridge. 
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described entirely by the last term of (3.34), or, near x = ~ , t ,  by (3.20). For x < 0, 
the last term in (3.34) times sin (nz) precisely cancels the corresponding term in 
(3.42), so that the near-field 

The steady part of the drag on the obstacle per unit spanwise distance is 
found to be 

is the only steady contribution for x < 0. 

nK 

n=l 
i n  C (3.43) 

in our notation. (To dimensionalize this, multiply by U2D x (density), remem- 
bering that D is r1 times the channel height.) 

In  summary, the steady part of the complete solution is, say, 

n K  

n=l 
$; = K-%; = 31fs(l)+$E(,,+ (last term of (3.34)-)sin(nz). (3.44) 

f 

4. The second-order columnar disturbances in the inviscid bounded 
problem 

4.1. The nonlinear forcing due to the lee-wave tails 

In  the problem (2.10) for f2) and fP), the inhomogeneous forcing functions 
&(x, z ,  t), g ( x ,  z ,  t), R(x, t )  that appear on the right-hand sides of (2.10a, b ,  d )  are 
now known functions because we know $(I) and @I). 

In  evaluating & and 9 it will be convenient to regard each of them as sums of 
various separate contributions. Since (2.10) is a linear problem, we may solve 
separately for the corresponding contributions to $(2), P), and likewise for 
the contribution to lif(2) and IY2) due to the boundary-condition inhomogeneity A. 

In  order to reach the main results as quickly as possible we restrict attention, 
in $4, to certain contributions to lif(2) and O(2) which will be denoted by 

Y(x, 2, t),  @(x, 2, t), 

and which will turn out to contain the dominant columnar disturbances. Y and 
@ correspond to those parts o f d  and a that are associated with the self-inter- 
actions of the lee-wave tails. It can be shown ($5) that all other contributions to 
dl and give rise to columnar disturbances of relatively insignificant strength, 
if any, and that the same applies to R .  

The problem to be considered in this section, then, takes the form 

IZK 

n = l  
(a,+a,)@-K2a,Y = C 'Bnn(x,t)sin(2nz), 

Y = @ = 0  for t < 0 ,  

Y(x, 0, t)  = 0, 

Y(X,T,t) = 0, 

(4.14 

(4. lb)  

( 4 .1~)  

(4.ld) 

(4.le) 

(4.1.f) 
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To define the right-hand sides, let 

[ x ,  = t-)(x- b,t)] I for t < 0 and 
enn = o (  for Ix,I > E (all t )  ( 4 . 2 ~ )  

and en, = 1 otherwise, where E > 0 will be left unspecified for the present, except 

(4.2b) 
to say that 

Now, noting (3.20) and (3 .31~~))  define 

2 = o(t4). 

a[sin (nz) Re (gneiknx), V2{sin (nz) Re (3, %!,, sin (2nz) = enn 
arx, 2) 

I , ,  

a[sin (nz) Re (sneiknx),  sin (nz) Re (@,eiknZ)] Bnn sin (2nz) = en, w, 2) 

I n  virtue of (4.2a) %!,, and ‘Bnn represent a forcing region whose centre moves 
away from the origin with velocity 0,. 

In what follows, the intrinsic long-wave speed 

c2n CZn(0) = Ygn(O) = K/2n, (4.4a) 

for the 2nth mode, will play a central role. We define also the absolute long-wave - 
velocities 

C& = l + C  
c, 5 1 - c,,, * 0, 

recalling (3.1). 

(4.4b) 

4.2. Calculation of !Illn, and Bnn 
For large t ,  advantage can be taken of the slowly varying properties (3.30~) etc. 
of s n ( x ,  t)  and @,(x, t )  when carrying out the differentiations with respect to x 
in (4.3). 

Let @ stand for some function of x and t. Using (3.30~) we can show that 

a [sin (nz) Re (gnei‘t .X),  sin (nz) Re (@eiknX)] 
a(x, 2) 

+nknsin(2nz)Im (S:@)+O(t-12,), 
if = O(t-4) and az@ = 0(t-lin), (4.5a) = I  0, exactly, if @ = (real constant) x S,, (4 .5b)  

where, as before, 2, = max ( l x n l ,  1) = o(t4). An asterisk denotes the complex 
conjugate. It is noteworthy that, to lowest order, there is no oscillatory contribu- 
tion involving efZiknx. (This is not true of the remaining terms O(t-12,).) 

To obtain 2Jln,, we may set 

@ = ,-ik 12 x (-n2+a:) (s:,e*f”.z). 

By(4.5b),thecontributions - n28,and - k i 8 n  to thisexpressionmaybeignored, 
for the purpose of substituting into (4.5a). That is, we could equally well take 

@ = 2ik,axgn+a:s,, 
= 2iknazgn+ 0(t-1in) 

‘ 5  F L M  52 



226 M .  E .  McIntyre 

by (3.30c), which also implies that this @satisfies the conditions of ( 4 . 5 ~ ) .  Thence 

En, = enn[~nt i fa , (~f l  +O(t-G,)l. ( 4 . 6 ~ )  

To calculate Bnn we take 

@ = a n - K 2 s n  = - ikn8 ,sn+0( t1 in)  

in (4.5a), noting (3.32), (4 .5b )  and that K is real. By (3.32), ( 3 . 3 0 ~ )  and (3.33), 
the conditions of ( 4 . 5 ~ )  are again satisfied and it follows that 

B nn = e  nn [-I ,n%azl8il +o(t-lfn)I.l (4.6b) 

An alternative and illuminating way of calculating Enn is to use the fact that 
it represents the curl of a body force which in turn equals the divergence of the 
Reynolds stress tensor. Without quoting details (but see the writer's (1972) paper) 
we note that the horizontal component of this body force turns out to be exactly 
independent of z ,  and therefore irrotational: Enn sin (2nz)  is entirely attributable 
to minus the x-derivative of the average, over a wavelength, of the contribution 
- aZ{(a,$)2] to the vertical force. (But because of the equal importance of the non- 
mechanical forcing Bnn, the second-order motion cannot be described solely as a 
response to a 'radiation stress' as in the problems considered by Longuet- 
Higgins & Stewart (1964) -at least, not from an Eulerian viewpoint.) 

4.3. Xolution 

VVe could now solve (4.1) by means of transform methods as in $3. However, it is 
simpler for our purposes to proceed as follows. 

Consider the solution to the 'long-wave equations', namely (4.1) with V2 
replaced by 8;. Denoting the long-wave solution by 

(4.7) 

( 4 . 8 ~ )  

(4.8b) 

(4.8~) 

(4.8d) 

(4.9a) 

(4.9b) 

where the operator Azn(u, w) is defined, for any given pair of functions u(x ,  t ) ,  
w(x, t )  by 

A&(u,v) = - (u(X+C&T-C&t, T ) + w ( x + C & ~ - C C Z ~ ~ ,  7)}d7.  (4.10b) 
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One can now use (4.9) to obtain to leading order the columnar-disturbance 
strengths in the 2nth modal component, Y2,, O,, say, of the exact solution of (4.1). 
First, it can easily be shown that the expressions (4.9) do contain columnar dis- 
turbances with strengths of order unity as t + co; explicit expressions are given 
below. Second, it can be shown that the differences 

- - 
xr;, = Y,,-Y,,, G;, = o~,- o,, 

between (4.9) and the exact solution contain relatively negligible, if any, 
columnar disturbances. A simple proof of this fact is given in appendix B. 

To find explicitly the strengths of the columnar disturbances described by 
(4.9) we confine attention to regions of space such that 

x = x o + V t  ( V + b , ;  V+c$,),  (4.11) 

xo and V being constants. Now it follows from the properties (3.30a, b ) ,  and their 
consequence 

that, when x is given by (4.11) and t is sufficiently large (depending on xo), 

a,l?j;\ = -b,azl?j:\ +O(t-12,) [2, = max(lx,I, I)] 

SX[e,n(t,7) {a t l? j i (~ ,  711 +0(t-12,)}15=2,-C$7--C~t1 a7 

= -6;{Ic&-k),~-~ la:/ +O(iX-1)+O(t-W)), 

where b: is equal to 1 if V lies between b, and Ck, and is zero otherwise, (The first 
error term comes from that in (3.30b) at the ends of the significant part of the 
range of integration, and the second from integration of the error estimates in 
the integrand and in the relation below (4.11).) The total error estimate will be 

(4.12) 
minimized at  O(t-4) if we choose x = t i .  

One can now easily calculate the result of substituting (4.6) into (4.9) given (4.11) 
and (4.12). The result is that, for t sufficiently large 

( 4 . 1 3 ~ )  

where Y& = @$, = 0 when V $ (b,, C&), (4.13b) 

TZn(ZO + Vt, t )  = Tzn( + V)+'T;,(V)]. 
G2,(xo + Vt,  t )  = G&( V )  + 8,( V )  ' 
- - 

and M,, = -&niitlanl2+o(t--k), (4.13a) 

B,, = +~ni i~ lanl2+0(t -*) .  (4.13e) 

We note from (4.46) and (3.18) that Ci, 4 b,; but C;, can be equal to b, if, 
exceptionally, 

K = 2+n (some integer n).  (4.14) 

(4.13b) then suggests that, for this n, the disturbance corresponding to the lower 
signs is confined to the nth tail. Returning to the more general expression (4.9), we 

15-2 
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can confirm this and also show that the amplitude of the disturbance grows as ti .  
(Even when such resonant growth occurs it will not invalidate the basic ampli- 
tude expansion, under the restriction (7.1) which must in any case be imposed, as 
discussed in 9 7 . )  

4.4. Physical interpretation of the columnar-disturbance formulae 

I n  general (when (4.14) does not hold) the simplicity of the formulae (4.13) can 
be accounted for by the following considerations, which also provide an indepen- 
dent check on the foregoing analysis. 

The four expressions for q& and @& given by ( 4 . 1 3 ~ )  are equivalent to the 
four relations 

8, = 4 n z C 2 , T ~ ,  @& = -4n2CanT2+n, (4.15a,b) 

IG,-b,l(-4n2~',)+IC&-b,l ( -4n2T&)  = M,,, ( 4 . 1 5 ~ )  

- 

(4.15d) 

The first pair of relations expresses the fact that the far end of each columnar 
disturbance propagates freely, with intrinsic velocity - C,, or + C,,, as described 
by the homogeneous counterparts of the long-wave equations (4.8a, b).  Now 

m m 

M,, = 1 %R,,dx+O(t-*) and B,,, = Bn,dx + O(t-8); 
- m  --m 

consequently the second pair of relations (4.15c, d )  exhibits the way in which the 
solution, a t  large time, approximately satisfies the following integral relations, 
which are an immediate consequence of either the long-wave or the full equations 
under appropriate boundary conditions: 

00 

a t 1  { -4n2y2n, @,,} dx = 1 {mnn ,  Ban} dx- (4.16 a,  b)  

The right-hand side of (4.16a), /%Rnndx, is the total rate a t  which vorticity 
with vertical distribution sin (2nz) is being introduced into the fluid; this takes 
place within the comparatively small region (x,I 6 t*, i.e. (x - ant\ < t#. Relation 
( 4 . 1 5 ~ )  shows that at large time most of this vorticity is being shared between, 
and distributed evenly within, the two expanding regions occupied by the two 
columnar disturbances. Similarly, %,,dx is the total rate of introduction of 
buoyancy into the sin(2nz) mode, and (4.15d) describes how this is taken up 
predominantly by the two columnar disturbances. The fact that these integrals 
are different from zero is the reason why the problem (2.10) is of type one. 

The fact that the first-order problem (2.9) is of type zero can be understood 
similarly, after transferring the forcing term from the boundary condition 
(2 .9d )  t o  the equations by subtracting from function satisfying the boundary 
conditions and linear in z .  Then we obtain on the right-hand sides of (2.9a) and 
(2.9b) forcing terms proportional to (a,+ 8,)2a, h and (a,+ a,) h respectively. The 
integral of the former with respect to x is zero, and that of the latter tends t o  zero 
as h(x, t )  becomes steady. 

--m --m 
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0.5 

0 

1.0 t 0 0.5 

K-Iri 3-? 

FIGURE 4. Strengths of the pair of columnar disturbances due to the nth lee-wave tail, 
as a function of K - h .  Upon multiplying the ordinate by l i z l  a,/ z, the heavy curve gives r&, 
and the light curve gives r&. (See text.) 

4.5. Xummary of main results 

We now gather in a form convenient for reference the principal results of the fore- 
going analysis. These results do not depend on the precise shapes B,(x, t )  of the 
lee-wave tails, but only on the properties (3.30)-(3.33) of 6, and G,. In  what 
follows it will be useful to recall that b,( > 0) ,  Cz,( > 0) and C& are defined by 
(3.18), (4.4a) and (4.4b)respectively, and that n,is thelargest integerless thanK. 

Each of the n, lee-wave tails moves downstream with speed b, and forces a 
pair of second-order disturbances. The free end of one of these propagates with 
the stream, with velocity C&, and that of the other against it, with velocity C&. 
The disturbance propagating against the stream is described asymptotically, for 
II: - Vt (t + CO, V =I= b,, V + C&), by 

(4.17~) 
buoyancy- e2(2n)C2,F&sin(2nz) [ V ~ ( b , , C g ) l ,  (4.17b) 

stream function - e2(2n)-l r& sin (2nz) [ V E (on, Cz;)], 

both being zero for V $  (On, C&). Here (taking the lower signs in ( 4 . 1 3 ~ ) )  

where ELI, is the steady amplitude of the stream function sRe (a,eiksX) for the 
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nth lee-wave train. The dependence of 
in figure 4. 

stream past the obstacle if 

upon K-In is shown as the upper curve 

The expressions (4.17) represent a columnar disturbance that penetrates up- 

c, = 1-(2n)-lR < 0, (4.18) 

corresponding to the unshaded part of figure 4. It should be noted that this can 
occur only in a multiply-subcritical case 

K > 2 .  

The corresponding alteration to the upstream velocity profile is 

€2 x r, cos (znz), 
where the summation is over those values of n for which (4.18) is true. It is note- 
worthy that the sign of the velocity-profile alteration is always such as to increase 
the total velocity near the boundaries (but it should be mentioned that this does 
not necessarily apply to  the rotating-tube problem of appendix A). Such a 
change is opposite to what would be expected from a naive argument about the 
obstacle tending to block the flow (which, of course, is not an apt description of 
the process described by the present theory, either in the stratified or the rotating 
problem). 

For points within the shaded part of figure 4, the disturbance represented by 
(4.17) is confined downstream of the obstacle. The darker shading corresponds 
t o  a columnar disturbance extending downstream of the tail, and the lighter 
shading to one extending upstream of the tail but not reaching the obstacle. 
The dividing line between these two cases represents the exceptional case in which 
(4.14) holds, and in which the disturbance is not columnar, being confined to 
the tail that generates it and growing in amplitude as ti .  

The other member of the nth pair of second-order disturbances propagates 
with the stream, and so always takes the form of a columnar disturbance extend- 
ing downstream of the tail that generates it, since b, < C& always. It is described, 
for IL' N Vt (t  3 co, V 4 b,, V =I= CA), by 

stream function N ~ ~ ( 2 n ) - ~  r& sin (2nz) [ E (b,, c,')], ( 4 . 1 9 ~ )  

buoyancy N - e2 (2n) C,, sin (2nz) [ P E (D,,, C&)], (4.19b) 

both being zero for V $ (on, C,'), where 

shown as the lower curve in figure 4. 
In  the numerators of ( 4 . 1 7 ~ )  and ( 4 . 1 9 ~ )  the first term within curly brackets 

arises from the mechanical forcing '33tn, and the second term from the buoyancy 
forcing B,,. As one might guess, it is only the first of these that is associated with 
the way in which the fluid satisfies the impulse principle (Benjamin 1970, eq. 
(3.13)).  It is found that the Bnn contributions cancel when ( 4 . 1 7 ~ )  and ( 4 . 1 9 ~ )  
are used to  calculate the total impulse to leading order. (The latter's time rate 
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of change, as can readily be checked, does of course turn out to be minus the drag 
given by (3.43).) 

To obtain an idea of the numerical strength of the upstream influence, take 
K = 2.5, for example; we then find that the upstream velocity profile is changed 
by 0.16ii2,l~,)~ cos (22). In  dimensional terms the value of this at, say, the bound- 
aries, becomes 0.16U times the square of the maximum streamline or isotherm 
slope associated with the (n = 1) lee-wave mode. 

4.6. Independence of initial development; slow introduction of obstacle 

We state two extensions of the foregoing, which provide evidence that our main 
results concerning upstream influence are largely independent of the way in 
which the obstacle is introduced into the initially undisturbed flow. 

(i) The main results given above are clearly unaltered if the time-dependence 
of the obstacle h(x, t )  has a Laplace transform with a simple pole at  p = 0 and, 
at all its other singularities, R e p  < - b  where b is a positive number. This 
merely introduces into (3.7) and (3.11) additional contributions that are O(e-bt) 
for large time. Consequently the same asymptotic columnar-disturbance strengths 
are obtained for a variety of ways of making h(x, t )  tend (exponentially) to h(x) 
ast+oo. 

(ii) The case h(x, t )  = h(x) times a slowly varying function of time, 

x(t) [x(-a) = 01 

is not included in (i), but is amenable to the usual formal two-scale approach. 
Each lee-wave train is given by the steady solution modulated by an envelope 
s(t- b;’x). The ‘tail’ now comprises the whole lee-wave train. The resulting 
second-order disturbance, to leading order, is 

where H ( x )  is Heaviside’s step function; s20(2) is given by the same expression 
modified by replacing (2n)-l by 2n C2, and inserting a minus sign before the second 
line. For those disturbances that penetrate upstream this solution evidently 
reduces to (4.17) with I?& replaced by its natural generalization 

r,xSz(t-&) (x < o,cg 01, (4.21) 

V now being irrelevant. 
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i 

(8, + a,) 8 - K2aa, = B (x, Z, t ) , ( 5 . l b )  

y = 8 = O for t <lo, (5.1~) 

asv/(X, 0, t )  = a,&, t ) ,  (5.id) 

,a,v/, e +  o as 1x1 +co (t  < co), (5.1f 1 

y(.,n,t) = 0, (5 . le )  

where 
nIi 

n = l  
M = A- C W,,sin ( Z n z ) ,  

"K 

n = l  
B ~~93'- C'B3,,sin(2nx). 

( 5 . 2 ~ )  

(5.2b) 

9Rnn and 23"" are defined in (4.3); &and28 are defined by (2.12), in terms of the 
fmt-order solutions, which are 

P) = $dl) + $dm) + c (1c.n + @$&) sin (nz) ( 5 . 2 ~ )  

and a similar expression for 8(Q, where the various terms are defined in (3.40), 
(3.42), and (3.34). 

That the columnar-disturbance strengths (4.17) and (4.19) should dominate 
those contained in y and 8 is intuitively plausible from the preliminary discussion 
in § 1. It is far from obvious mathematically, if only because of the large spatial 
extent (order t )  of the region over which the forcing functions M and B are signifi- 
cant. We have been able to prove, however, using techniques that avoid detailed 
solution of (5.1), that the strengths of columnar disturbances present in u, and 8 
are 

This estimate is marginally greater than the error terms O(t-*) already present 
in (4.17) and (4.19) (see (4.13)), and is therefore the governing estimate. 

It is conjectured that (5.3) is far from the sharpest possible estimate. By 
going into more detail or by using deeper (but perhaps less physically intelligible) 
methods, the estimate (5.3) could probably be improved to 

m 

n = l  

O(t-4 log t )  . (5.3) 

O(t-1) (5.4) 

(which, it can be argued heuristically, is the actual strength to be expected for 
columnar disturbances due t o  self-interaction of the transients in regions far 
removed from the lee-wave tails). 
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The method used to establish (5 .3 )  will now be indicated in brief outline. The 
forms of $(I) and W, and the Jacobian form of the nonlinear terms, are such that 
we can write 

OD 

M = Mnn(x, t )  sin (2nz) 

+ Z, Mmn+(x,t)sin((m+n)z}+ C M,,-(x,t)siii((m-n) z}  ( 5 . 5 )  
n=l 

m9n rn3n 

and similarly for 6. In the last two summations, both m and n run from I to 00. 

In  virtue of (B. 6 ) ,  it is enough to estimate columnar-disturbance strengths in 

and similar expressions g2n and Ff,,*, provided that 

t s,'[s" -02 {(a,+a,)q4n}2dx] at = O(l%logt), (5.7) 

- 
and similarly for Tmn*, 62n, andem,,. That (5.7) is certainly satisfied can be shown 
t o  follow from straightforward estimates based on the results of $ 3 .  Given (5.7), 
relation (B 6) then implies that the strengths of any columnar disturbances not 
described by (5 .6)  are O(t-ilogt). 

The analysis of (5.6) is based on the principle that if 

then any columnar disturbances present in Tzn must have strength O(L) .  Upon 
substituting from (5.6) and (4.10) it is seen that (5.8) and its analogue for G Z n  will 
certainly be satisfied if relations of the form 

hold for all parallelograms 9 ( t )  of the type illustrated by the broken lines in 
figure 3 above. One pair of 9 ' s  sides has slope C&, and 9 can expand with time 
subject to its perimeter and area being O(t)  and O(t2)  respectively. Similar rela- 
tions involving Mmn* and Bmn* will bound the columnar-disturbance strengths 
in qmn* and emnk. 

All these integrals are estimated from (3.20) and (3.30)-(3.33))  together with 
similar estimates for the purely-transient contributions, derived from expressions 
like (3.37).  The result is (5 .3 ) .  It is dominated by the contributions to M,, 
(n < nK) from the interaction between transients and steady lee waves for 
x, just less than -2 = -&. 

The largeness of the domain of integration 9 ( t )  means that a certain amount 
of delicacy is needed in making the estimates. To obtain (5.3) one must exploit 
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of the first-order solution defined by (3.44) : it can easily be verified that 
(i) the vanishing of the self-interaction of the steady part @L(x, x ) ,  OL(x, z )  

(5.10a) vz@' = - ~ z $ '  = - ,gi. 89 

K is real, so that, as in (4.5b) 

(5.1 0 b) 

(the basis of Long's model), 
(ii) a similar cancellation among the leading terms of the transient self-inter- 

actions, 
(iii) a near-cancellation among the leading terms of each interaction between 

transients with < n,, and steady lee-waves (e.g. the two terms of (3.34)), at 
locations near the downstream (tail) end of region IV in the version of figure 3 
appropriate to the transients (which will be different from that appropriate to 
the steady lee waves if the mode numbers n are respectively different), 

(iv) the fact that the interactions just mentioned, and also those between 
transients with different values of n, make contributions to the integrands that 
oscillate in space-time, allowing application of a generalized, two-dimensional 
version of Riemann's Lemma (Jeffreys & Jeffreys 1962, Q 14.03). 

Further details are not reproduced here, since they are lengthy. The main 
steps are given in the longer version of $5 mentioned in the footnote to $3.3, 
which is available from the J.F.M. editorial office. 

The remaining contribntion to y and 8 is that from the boundary foreing R on 
the right of ( 5 . 1 4 .  From (2.11), 

R(x , t )  = - h(x , t )a ,$" ' (X ,O, t ) .  

It is fairly obvious that no columnar disturbances arise from this forcing, because 
of the evanescence of h and therefore of A as 1x1 + co. The problem for this con- 
tribution is entirely similar to the first-order problem solved in § 3. 

Alternatively, the absence of significant columnar disturbances due to A 
can be verified using (4.10) (see the argument sketched at the end of §4.4),  
together with the result of appendix €3. These give O(t-*), a sufficient, if crude, 
estimate. 

6. Viscous and unbounded lee-wave regimes 
We now briefly discuss the inviscid, unbounded case, and the effect of slight 

viscosity in the bounded case when there is no boundary-layer separation. This 
complements an analysis by Miles (unpublished, but similar to that of Miles 
1970) which indicates validity of LH for unbounded, steady, slightly-viscous 
flow. The transient, inviscid, unbounded problem is similar to the problem for 
two-dimensional wave packets considered by Bretherton (1969, Q 3.3). 

Note that a viscous formulation of LH cannot be expected to be equivalent 
to a transient formulation, if only because the problem is nonlinear. In  the 
bounded case the answers (there are two viscosity-influenced asymptotic rdgimes) 
are indeed quite different from the result of Q 4. 
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6. i. The two slightly-viscous bounded rhgimes 

Suppose now that the fluid is slightly viscous, with 

E = v/ND2 < 1, (6.1) 
and with a buoyancy diffusivity of magnitude similar to that of the viscosity 
v. The boundaries are taken as no-slip and moving with the basic flow, as in the 
usual ‘towing’ experiment. We assume no separation and thus no form drag 
apart from the (order-@) wave drag. 

According to linearized theory, the lee-wave system is steady and spatially 
attenuated for t $ E-* because of the Stokes layers a t  the boundaries (Phillips 
1966). (These layers are of thickness Efr, because particle oscillation frequencies 
are of order N.) For the problem of columnar-disturbance generation two 
asymptotic regimes are relevant, namely E-1 < t < E-l and t 9 E-l. In  the 
first regime any columnar disturbances that may exist are effectively inviscid; 
in the second they are fully viscous with a new and more complicated x-structure 
depending on the buoyancy diffusivity as well as on v. A detailed analysis has 
not been carried out; the mathematics can be expected to be similar to that in 
Pedley (1969). 

However, it  can be seen without considering details that, in either regime, 
the excitation of columnar disturbances is only O(@) times a positive power of E .  
This is because the lee-wave system is steady. Outside the Stokes layers (5.10) 
is relevant, except that there is an error O(E) in ( 5 . 1 0 ~ )  so that (5.10b) is replaced 

4 = O(E) and LiY = O(E), everywhere, (6.2) by 

reflecting the fact that if it  were not for the viscous and diffusive terms in the 
interior, the nonlinear terms would vanish exactly, as in Long’s model. (Of course 
one can verify that the result of explicitly performing the Stokes-layer analysis 
agrees with (6.2). What happens is that the interior velocity and buoyancy fields 
induced by the Stokes layers give rise to a contribution, of order e2E*, to the non- 
linear terms, which cancels that due to the spatial variation of amplitude, given 

The length of the steady lee-wave system is of order E-*, and so the columnar- 
by (4.61.) 

disturbance strength due to d% and A9 is 

€2 x E-* x O(E), = O(GE*), 

which vanishes in the inviscid limit. 
There could also be columnar-disturbance generation, for t 9 E-l, associated 

with (unseparated) obstacle wakes, or with the order-e2 rectified streaming in 
the Stokes boundary layers (Phillips i966),  but the strength of such columnar 
disturbances can still be expected to  vanish with E.  We estimate strengths 
O(E4) and O(s2Ea) respectively. 

6.2. The inviscid, unbounded, transient rhgime 

Only the inviscid, time-dependent problem is mentioned here in view of Miles’ 
result quoted above that a steady, slightly-viscous, unbounded analysis predicts 
vanishing upstream influence as v -+ 0. 
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The importance of the fur field in the inviscid bounded problem immediately 
suggests that, in unbounded geometry, any upstream influence will tend to zero 
as t -+ 00 because the lee-wave system, and hence the second-order forcing, now 
spreads out vertically as well as horizontally. Enough analysis has been carried 
out to confirm this and to show that the far-upstream horizontal disturbance 
velocity u is of order 

Detailed solutions have not been obtained. The main features that differentiate 
the unbounded from the bounded problem are as follows, in brief outline. 

If a finite obstacle is introduced into the inviscid, unbounded, uniformly- 
stratified flow of Long’s model (Miles & Huppert 1969, and refs.; Pao 1969)) 
linearized theory predicts a developing lee-wave system which a t  large times 
occupies a semicircular region with 0 < x < t as diameter. The contributions to 
& and 33 that are directly related to the lee-wave amplitude and so analogous to 
mnn and Bnn are found to be significant only at the fringe of the semicircle. 
They force a disturbance whose height scale is set by the height ht of the semi- 
circle. 

On this scale the buoyancy forcing .% is found to have negligible effect in 
comparison with the mechanical forcing&, in contrast with the bounded problem 
but in agreement with a tentative conclusion of Bretherton (1969, p. 796) in 
connection with his solution of a simpler but related problem. The group 
velocity of the second-order disturbance is nearly horizontal, and large, of order 
t .  Therefore this disturbance very rapidly penetrates both far upstream and 
downstream. 

As in Bretherton’s problem, the large horizontal group velocity means first 
that the hydrostatic approximation applies, and second that the problem is 
approximately equivalent to one in which the forcing is concentrated at  the z- 
axis so that 

(and 9 is irrelevant). Here g(<)  = 0 except in 0 6 < < 4; there it is an order- 
unity function of 6 apart from a behaviour like (4 - <)-% for < just less than &. 
At a fixed point, no matter how far upstream, order-of-magnitude considerations 
now show that the disturbance amplitude for u or 0 is of order s2t-2. 

fZzt-2. (6.3) 

A = t-”(6) 6(x)  (6 E x/t) 

7. Restrictions on validity of the basic expansion and on meaning to be 
attached to Long’s Hypothesis 

Benjamin’s impulse argument, our analysis, and LH as often conceived, all 
tacitly assume validity of the expansion (2.8) in powers of the small parameter 
E .  In  particular they all depend upon the basic assumption that the time develop- 
ment (or steady viscous state) of the lee-wave system is uniformly approximated 
by the linearized description, a t  least qualitatively- so that, for instance, the 
finite-amplitude flow becomes steady and there is a constant wave drag. 

Such an assumption is, however, likely to  be justifiable only for dimensionless 
times satisfying 

(this being replaced in § 6.1 by an analogous condition restricting the smallness 
t = o(e-1) as E +  0 (7 .1)  
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of v). The existence of such restrictions seems clear from recent work on resonant 
interactions among internal gravity waves, noting the fact that stray transients 
( $ 3 . 3 )  will in general be present. 

It is not resonant interactions between pairs of lee-wave trains that will initiate 
the breakdown after (7.1) is violated; their interaction coefficients are zero for 
basic flows admitting Long-type solutions, by (5.10). What is relevant is the 
unstable type of resonant interaction (e.g. McEwan 1971; Martin, Simmons & 
Wunsch 1972) between one lee-wave train and any of a large number of pairs of 
initially small transients. These interactions clearly cannot be described by the 
expansion procedure of 5 2.2. They are negligible under (7 .1 ) )  but for larger times 
will give rise to a cascade of lee-wave energy into more and more modes, leading 
to a complicated, and presumably unsteady, inviscid picture for t -+ 00 with E 

constant. 

8. Concluding remarks 
The main results for the two-dimensional inviscid, transient, bounded problem 

have been summarized on pages 229-231. The corresponding results for the 
rotating-tube problem are set out in appendix A; in the rotating-tube problem, 
there is upstream influence even when only one lee-wave mode is present, since 
the combinations of Bessel functions involved have no property analogous to 
the orthogonality of sin(2z) and sin x .  

We remark that the result concerning the absence of upstream influence in 
the singly-subcritical two-dimensional problem appears to be true not only of 
+@) but also of +(3), $(4), . . ., i.e. formally true to all orders d. An argument by in- 
duction on r ,  not reproduced here, indicates that every columnar disturbance 
contained in $(‘) must have even-order modal structure sin(2nz) and must 
consequently be confined downstream, when n, = 1. But the restriction dis- 
cussed in 5 7 should be borne in mind. 

The results of 54 and appendix A describe the way in which the impulse prin- 
ciple is satisfied by the fluid motion. We note that the total impulse is equal to the 
formal ‘wave momentum ’ for the lee waves, defined as wave energy divided by 
horizontal phase velocity (R. W. Stewart, cited in Bretherton 1969, $4 .1 ) .  Our 
results, however, imply a rather unexpected relationship between this formal 
wave momentum and the actual intrinsic properties of the waves, which is dis- 
cussed elsewhere (McIntyre 1972). 

In  laboratory experiments, columnar disturbances could easily result from 
other causes, such as drag associated with separation bubbles, or local turbulent 
redistribution of x-momentum or of buoyancy or angular momentum. Any of 
these could correspond to the presence of forcing terms of type one (see 54.4). 
In  order to observe the effect discussed in the present paper, a carefully designed 
laminar experiment with a streamlined obstacle would appear to be necessary. 
It can be seen from figure 4 that one of the stronger and more easily-observable 
columnar disturbances is predicted to occur just downstream of the lee waves, 
when C ,  is just greater than b,, i.e. when 

K (  = N D / U )  is just less than 26, = 1.26, (8.1) 
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D being 71-1 times the depth of the fluid. The analogue of this in the rotating-tube 
problem is given by (A2) and (A 18). 

The writer acknowledges helpful conversations or correspondence with T. B. 
Benjamin, P. G. Drazin, H. E. Huppert, J .  J. Mahony, J. W. Miles, K. Stewart- 
son, and K. Trustrum. He is indebted to A. W. Stewart for calculating table 1, 
using the facilities of the Cambridge University Computer Laboratory, and would 
like to thank St John’s College, Cambridge, for support in the form of a research 
fellowship. 

Appendix A. Results for the rotating-tube problem 
In  place of the Cartesian co-ordinates (x, z) ,  define axial and radial cylindrical 

polar co-ordinates (x, r ) .  Making appropriate changes in the definitions of various 
symbols we have, in place of (2.3)’ 

Here 
K = NRIU. 

AT is twice the basic rotation rate about the x-axis, and R is the tube radius, used 
as the length scale for nondimensionalization. The azimuthal component of vor- 
ticity 

7 E r-1ai$+8r(r--18r$); (A3) 

the stream function is now defined by 

(A 4) 
x component of velocity = 1 + r-l a,$., 
r component of velocity = - r-l ax$, 

where the velocity scale is U ;  xis the reIative azimuthal velocity measured in the 
same sense as the basic rotation, and made dimensionless with the scale K-1U. 

Let the complex amplitude of the nth lee-wave train be denoted by a, as be- 
fore. The tail is described by 

(As) where j, = 3.83, j2 = 7.02, ..., j , ~  (n+$)n,  

the zeros of the Bessel function J1. As before, the functions 8% and Gjn tend to 
a, and Kza, as we move from the tail into the body of the lee-wave train. 8, and 
@, are still defined by expressions of the form of (3.26) and (3.31b), with an f, 
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having the same qualitative properties as before, and with 

c,(k) = K(kZ+ji)-i,  (A71 

y,(k) = Kji(k2 +j:)-Q, (A 8) 

C, ~ ~ ( 0 )  = y,(O) = K/j%; C$ 1 +C,, (A91 

kn = (K2- j i )*  (n < nK), (A 10) 

'13, = 1 - yn(kn) = ki/K2 > 0 (n < nK); ( A l l )  

nK is now defined by 

In place of (3.1) we assume 
jnx K ,  jnx+-t.l > K- 

j ,  < K + j n  (n = 1,2, ...). (A131 

By a calculation similar to that which led to (4.6a), we obtain 

(A14a) 

for the contribution to the right-hand side of (Ala)  due to the nth tail, where 
enn is still defined by (4.2). The non-Jacobian term on the right of (A 1 a) does not 
contribute, to leading order. For the right-hand side of (A 1 b )  we obtain 

[(+k~%lR:l) & d [ { ~ l ( j , r ) } 2 1 + o ( t - l i n ) ]  , 

since (3.32) remains true. 
Now let 

Of particular interest is 

(A 15a) 

(A15b) 

= - 0.675. (A 16) 

The fact that this is non-zero, in contrast t o  1 sin (22) sinxdz, is what will allow 
upstream influence to occur in this problem even when n, = 1. 

Some further values of olnq and Png are given in table 1. For each n, it can be 
shown that ccnq and f i n ,  are O(q-2) as q + co, implying uniform absolute conver- 
gence of (A 15). 

We now have a problem of exactly the same form as (4.8), for each (n,q) 
(n < nK). The analysis of 54.3 applies to each such problem. In  place of (4.17) 
and (4.19) we have, for the qth pair of columnar disturbances (1 < q < 00) due 
to the nth lee-wave tail (1 6 n < nK), that when x N Vt (V  + b,, V =I= (7:): 
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n 

4 1 2 3 4 5 6 

1 -0.675 - 0.547 - 0.401 -0.313 - 0.255 - 0.216 
1.350 0.642 0.431 0.326 0.263 0.220 

2 2,274 - 0'545 - 0.536 - 0.452 - 0.382 - 0.328 
3,363 1.091 0,704 0.525 0.420 0.351 

3 0.177 0.116 - 0.601 - 0.605 - 0.542 - 0.479 
0.070 2,257 1.201 0.854 0.670 0.553 

4 -0.057 3.832 - 0.238 - 0.564 - 0.584 - 0.546 
- 0.01 1 4.769 1.673 1.128 0.868 0.710 

5 0.028 0.231 0.903 - 0.380 - 0.589 - 0.609 
0.003 0.131 2.907 1.613 1.177 0.941 

6 -0.017 - 0.070 5.018 0.177 - 0.424 - 0.570 
- 0.001 - 0.024 5.842 2.115 1.458 1.140 

TABLE 1. Some values of a,* (top number of each entry) and PnG (bottom number); n cor- 
responds t o  the tail, and p to the modal structure of the columnar disturbance. These values 
are sufficient for oalculatiiig theoretical upstream velocity profiles when n K  < 6 

stream function N e2(jg)-I r ' ; ,rJI( jgr)  [ V E (bn, C;)], (A 17a) 

scaled azimuthal velocity (x) N T e2jqCpr';,J1(jqr) [V E (bn, C?)], (A 17b)  

both being zero if V $ (on, C?), where 

(A 17c) 

I n  particular: 
(i) The total upstream influence is obtained by choosing the lower signs and 

summing over both n and q, from 1 to  n,. 
(ii) When nK = 1 (3-83 < K < 7-02), the values of K giving an anomalously 

strong columnar disturbance just downstream of the lee waves are those for which 
C ,  is just greater than bl, as in the two-dimensional case. From (A 9) and (A 11) 
it can be seen that this corresponds to 

K just less thanjf j i ,  = 4.69. (A 18) 

The columnar disturbances just downstream of the tail a,re then dominated by 
the contribution for which n = 1, q = 2 in (A 17) and the lower signs are chosen. 

The foregoing are the main results analogous to those ofSs4.5 and 4.6 (i). For 
the slowly-varying problem analogous to  that of §4.6(ii), the solution (4.20) 
applies, with precisely similar modifications, namely replacement of I?& by 
r&, of 2n by j,, and of sin(2nx) by rJl(jpr) for ?i/. and by J,(j,r) for x. The summa- 
tion in (4.20) becomes a double summation, from n = 1 to nK and q = 1 to co. 
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Appendix B. Justification for the use of the long-wave solution 
If YL, = Yzn - q,, is the difference between the solution qzn of a (long-wave) 

problem of form (4.8), and a solution Y,, of the corresponding full problem, then 
Up;, is defined by the difference problem 

(a, + a,) (a$ - 4n2) Y Ln + a,@;, = a: M ,  

(at+a,)o;;n-K2a,Y;n = 0, (3 1 b )  

YLn = Okn = 0 for t < 0, (B Ic)  

a,Up;,, @in-+ 0 as 1x1 -+a (t  < a), (B 1 4  

where m(x,t) = -(a,+8,)T2,. (B2) 
The differentiated form of the forcing term, 8: m, makes the absence of columnar 

disturbances from Yhn and @in almost obvious, for forms of m likely to be of in- 
terest. A precise result is easily obtained as follows; it is sufficient for our purposes, 
although by no means the strongest possible. (It is worth emphasizing that the 
argument makes no reference at all to whether or not the long-wave solution is tt 
good approximation to the full solution in all respects; the forcing terms do not 
have to be slowly varying. This fact is basic, for instance, to the reasoning sum- 
marized in § 5 .) 

Let 

and similarly 0,. If wz -+ 0 sufficiently rapidly as 1x1 -+ 00, it is evident that \TI 
and 0, comprise the solution of a problem of the form (Bl) ,  but in which m 
replaces 8:m. By multiplying the first equation of this latter problem by -Y,, 
the second by K-20,, adding, integrating over all x, and using the boundary 
conditions, we obtain the corresponding energy relation 

By Schwarz’ inequality, 

Combining these relations, we get 

LJ -m 
whence, since 8 = 0 for t < 0, 

(B 5 )  

F L M  52 xb 
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Now suppose that Yk, or @ k n  contains columnar disturbances whose strengths 
are of order 1. That is ($2.3), there is a t  least one region, whose length in the x- 
direction is increasing like t ,  throughout which '?kn or OLn is equal to a one-signed 
contribution of order 1 plus, possibly, superposed oscillations of wavelength o(t ) .  
From (B 3)) Y, or OI must then be at  least of order it2 in the same region (its graph 
against x must be approximately a parabola). It follows that d must be at least 
of order it3. Hence 

m2(x,r)dx dr as t + 00. 
--m )"I 

This provides an estimate governing the possible asymptotic order of magnitude 
of the strength of any columnar disturbance present inY;, or 06,. It is presumably 
not sharp; the inequalities are crude, as is the use of the energy integral itself. 

It is now easy, for instance, to justify the use of the long-wave formula in $4 
t o  describe the columnar disturbances due to the self-interaction of alee-wave tail, 
to within the approximations made there. I n  that case, 

m = -(a,+aZ)Tzn = $n-2Azn{(~,+a,)Fmn,, (at+a,)%n,}. (B7) 

It can be shown that m = O(t*), crudely, under the assumption (4.2b), and that 
W? = 0 outside a domain of size O(t )  in the 2-direction. Thence 

1 = O(t-3)) 

which is smaller than other errors incurred in our main analysis. 
The estimate m = 0(&) is based on the explicit results of $4, together with 

estimates of the contribution from the terms not explicitly shown in (4.6). 
The main principles that were used in deriving it are, first, that the operations 
a, and a, do not increase any orders of magnitude involved- this follows from use 
of (3.30), etc.-and, second, that the ranges of integration in (4.10b) are O(t )  in 
size. 
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